Phase-Change Thermal Systems Laboratory

Laboratory Coordinator: Dr. Sameer Khandekar

Associated Faculty Members (if any):

List of Major Equipment:

- FLIR Infra-Red Thermographic Camera
- High Speed Videographic Camera
- Laser-Flash Thermal Diffusivity Measurement System
- Goniometer and Tensiometer
- Mass Spectrometer
- Helium Leak Detector
- Mass Flow Controllers
- Environmental Chamber and Flow Facility
- Lathe, Milling and Drilling Machines
- Pressure/Temperature Transducers and DAQ Systems
- Constant temperature Baths/Circulators (Various Units)
- AC/DC Power supplies (Various Units)

Brief description of the laboratory:

Laboratory research keywords:

Design of Experiments; Evaporation; Boiling; Condensation; Water Desalination; Fog Harvesting; Nuclear Containment Thermal-hydraulics; Heat Pipes and Thermosyphons; Energy Systems

Year	Major research and development activity
2020-2021	 Thermal Performances of a Flat-plate Pulsating Heat Pipe Tested with Water, Aqueous Mixtures and Surfactants.
	Interfacial dynamics and Transport Phenomena
2019-2020	 Drop-on-drop Impact Dynamics on a Superhydrophobic Surface
	 Evaporation Rate of Warm Water Placed inside a Partially-filled Top Cooled Enclosure was determined using non-invasive interferometry and supporting mathematical modeling.
	Spray Cooling of high-power LEDs
	 Thermal Characterization of Spray Impingement Heat Transfer over a High-Power LED Module was carryout and heat flux of the order of 1000

	W/cm ² was demonstrated with this technique.
	Interfacial dynamics and Transport Phenomena
2018-2019	 Coalescence dynamics of sessile and pendant liquid drops placed on a hydrophobic surface was experimentally investigated. Vertical and sidewise (horizontal) coalescence was explored.
	 Evaporation dynamics of liquid bridge formed between two heated hydrophilic and hydrophobic flat surfaces was explored.
	Development of Loop Heat Pipes:
2017-2018	 Loop Heat Pipes were indigenously developed with Copper and Nickle bi- porous wicks. The LHPs were successfully deployed for thermal management of high-power LEDs.
	 Miniature Ammonia Loop Heat Pipe for Terrestrial Systems were developed, tested and applied for electronics thermal management. Numerical model to predict the heat transfer characteristics were developed.
	 Dynamic Evolution of an Evaporating Liquid Meniscus from Structured Screen Meshes and other type of porous structures, as applicable to heat pipes was experimentally studied.
	 Effect of externally imposed vibrations on the thermal performance of miniature loop heat pipes for avionics cooling was investigated.
2016-2017	Understanding Transport Phenomena of Ferrofluids
	 Experiments were designed to estimate the heat transfer coefficient for single-phase and two phase (air-ferrofluid) flow of ferrofluids in capillary tubes.
	 On-demand Augmentation in Heat Transfer of Taylor Bubble Flows Using Ferrofluids was demonstrated via dedicated experiments under different boundary conditions. The multi-physics flow and heat transfer of magnetically activated ferrofluids was modeled.
	Flexible Heat Pipes for Space Applications:
	 Flexible wicked heat pipes were designed for space applications and prototypes were supplied to Indian Space Research Organization.
	Development of heat flux sensor:
	 Based on inverse heat transfer techniques, an algorithm was developed to estimate heat flux with the help of one/two thermocouples. This was implemented and a real-time heat flux measurement sensor was developed and tested. This was eventually installed in the Nuclear Containment Facility THYCON.
2015-2016	Understanding pulsating heat pipes:
	 Pulsating Laminar Flows in Microchannels were explored to estimate the transport coefficients.
	• Experiments were conducted on pulsating Taylor bubble flows in micro-

channels, in the context of understanding Pulsating Heat Pipes.
 Evaporation of a single liquid plug moving inside a capillary tube was studied with the focus on understanding the physics of thin film evaporation near the contact line.
 Experiments were conducted to understand the thransport phenomena of Thermally induced oscillating two-phase flows in mini-channels.
Steam Condensation in Nuclear Containments
 Experimental setup to decipher the flow of steam-helium-air mixture inside nuclear containment structures were initiated.
 A CFD based Modeling Approach for Predicting Steam Condensation in the Presence of Non-condensable Gases was developed and results were validated with supporting experiments.
 Effect of surface inclination on film-wise condensation heat transfer during flow of steam-air mixtures was investigated.